Introduction to

Physiological Variability

- Dr. G. D. Jindal
- Prof & Head, Bio-Medical Engineering,
- MGM College of Engineering & Technology Navi Mumbai.
- Ex. Head, Bio-Medical Instru. Section, BARC PhD Guide, University of Mumbai. gd.jindal@gmail.com

What is Variability?

Unused faculty leads to malfunction...

- 1. Machinery
- 2. Man Made Material
- 3. Professionals
- 4. Tools/Appliances
- 5. Unused house
- 6. Vaccination
- 7. Vehicle
- 8. Weapons

Physiological Parameter

- 1. Functioning of the living body is better described with the help of physiological parameters.
- 2. These parameters can be measured either non-invasively or by invasive means.
- 3. Some of the most common examples are Heart Rate, Body Temperature, Blood Pressure and Respiration Rate.
- 4. Other physiological parameters are stroke output, peripheral blood flow, peristalsis, secretion of endocrinal and salivary glands, glycogen-glucose conversion, motility of large and small intestines, secretion of urine and so on.
- 5. Some of these like heart rate, respiration rate and blood pressure can be easily measured for long time interval without causing any harm or discomfort to the patient.

Indian Medical System took cognizance...

Variability in Physiological Parameter

Variations in Blood Flow

Time Domain Analysis

μ

$$SDNN = \sqrt{\left(\frac{1}{N}\right)^{i=N}_{i=1}} (RR_i - \mu)^2$$

Total Power = Variance =
$$\left(\frac{1}{N}\right)\sum_{i=1}^{i=N} (RR_i - \mu)^2$$

$$Total Power = \frac{Variance}{\mu} = \frac{\sigma^2}{\mu}$$

Time Domain Analysis

$$SDANN = \sqrt{\left(\frac{1}{N}\right)^{j=N} \sum_{j=1}^{j=N} (RR^{j} - \mu)^{2}}$$

SDNN Index =
$$\left(\frac{1}{N}\right) \sum_{i=1}^{j=N} SDNN^{i}$$

$$RMSSD = \sqrt{\left(\frac{1}{N}\right) \sum_{i=1}^{i=N} (RR_{i+1} - RR_i)^2}$$

Time Domain Analysis

$$X_{k} = \sum_{n=0}^{N-1} x_{n} e^{-\frac{2\pi i}{N}kn} \qquad k = 0, \dots, N-1$$
$$x_{n} = \frac{1}{N} \sum_{k=0}^{N-1} X_{k} e^{\frac{2\pi i}{N}kn} \qquad n = 0, \dots, N-1$$

Fast Fourier Transform

For N=8 and W= $e^{(-i2\pi/N)}$ the equations are written as

$$X_{0} = x_{0}W^{0} + x_{1}W^{0} + x_{2}W^{0} + \dots + x_{7}W^{0}$$

$$X_{1} = x_{0}W^{0} + x_{1}W^{1} + x_{2}W^{2} + \dots + x_{7}W^{7}$$

$$X_{2} = x_{0}W^{0} + x_{1}W^{2} + x_{2}W^{4} + \dots + x_{7}W^{14}$$

$$-$$

 $X_7 = x_0 W^0 + x_1 W^7 + x_2 W^{14} + \dots + x_7 W^{49}$

Since W $^{(N+i)}$ =W i due to periodic properties of W, The Equation can be rewritten as

$$X_7 = x_0 W^0 + x_1 W^7 + x_2 W^6 + \dots + x_7 W^1$$

There by reducing the number of computations. In a sample size of N, the computations needed for DFT are N² whereas that for FFT is N*log₂N.

Spectral Leakage

Interpolation

Power Spectral Density

Power Spectral Density

Variable	Unit	Frequency Range	Description
Total Power	ms ²	< 0.4 Hz	The variance of RR intervals over the selected time interval
VLF Power	ms ²	≤ 0.04 Hz	Power of very low frequency component
LF Power	ms ²	0.04–0.15 Hz	Power of low frequency component
HF Power	ms ²	0.15 – 0.4 Hz	Power of high frequency component

Method 🗲	AR Modeling			FFT	
Region Ψ	Frequency (Hz)	Power (msec²)	Power (n.u.)	Frequency (Hz)	Power (msec²)
VLF	0.00	786	-	0.00	266
EF V	0.11	479	47.95	0.10	164
HE	0.24	450	45.05	0.25	214

Geometric Method

Poincare Plot

Poincare Plot

6

Poincare Plot : Effect of placebo & bisoprolol

Typical IPG

Diseases Affecting the Variability

 TABLE 1.

 Outline classification and examples of disorders that cause cardiac autonomic dysfunction

PRIMARY

ACUTE/SUBACUTE DYSAUTONOMIAS Pure cholinergic dysautonomia Pure pandysautonomia Pandysautonomia with neurological features CHRONIC AUTONOMIC FAILURE SYNDROMES Pure autonomic failure Multiple system atrophy (Shy-Drager syndrome)

Autonomic failure with Parkinson's disease

SECONDARY

CONGENITAL Nerve growth factor deficiency HEREDITARY Autosomal dominant trait Familial amyloid neuropathy Porphyria Autosomal recessive trait Familial dysautonomia - Riley-Day syndrome Dopamine beta-hydroxylase deficiency Friedrich's ataxia METABOLIC DISEASES Diabetes mellitus Chronic renal failure Chronic liver disease Thyroid disease (thyrotoxicosis & myxoedema) Vitamin B₁₂ deficiency Alcohol-induced INFLAMMATORY Guillain-Barre syndrome Transverse myelitis INFECTIONS Bacterial - tetanus Viral-human immunodeficiency virus infection Parasitic – Trypanosomiasis Cruzi; Chagas' disease Prion – fatal familial insomnia

	TABLE 1.
yan bili na na has	Continued
SECONDARY	
NEOPLASIA	· 网络林林林(11711-016-2426-141)的(1
Brain tumours	- esp of third ventricle or posterior fossa
Paraneoplastic	– adenocarcinomas:
lung, pance	eas, and Lambert-Eaton syndrome
SURGERY	ana ana ana amin' ami
Organ transpla	antation – heart, kidney
Vagotomy and	drainage procedures - 'dumping syndrome
Regional symp	athectomy – splanchnic
TRAUMA	
Spinal cord tra	nsection
MISCELLANEOUS N	NEUROLOGICAL DISORDERS
Subarachnoid l	naemorrhage
Epilepsy	- Mandadourio, Folder a construction and address Management
Narcolepsy	Parallel Box States of the second second

and the second of the second of the second second	2	
	954	langthinnon generalah
NEURALLY MEDIA	ATED SYNCC)PE
Vasovagal syncope	are sumption of	and sold high sold in the
Carotid sinus hype	ersensitivity	Mar en Reselvation en contractores en contra
Micturition syncop	e Magazitas	SARADO ANARA M MULTI
Cough syncope	ragens agastres	an and an an and an and
Swallow syncope	ha fromestick	Bulling and the second states of the
Associated with gl	ossopharvngea	l neuralgia

HRV in Disease Characterization

Blood Flow Variability in AIDs

Pulse Morphology and Variability

Peripheral Pulse Morphology

Morphology Index

	121927		
44	10 Settings		
	PERSC	ONAL INFORMATION	
€ ¥	Name	[adk]	Project Id D LEAD RA
	Age	⊉ 0	Acq Time 275 T
4 A 6 b	Gender	Female	Sampling Rate 500 💌
<u>لا</u> لا	Diseases	HEALTHY	Drug Usage
	ADDRESS	ADD1 ADD2 ADD2	Select ADC
14 ()	TELEPHONE	Unknown	ADC1 - PL1 27 ADC1 - PL1 28 ✓ ADC2 PL1 29-C1 ADC 3 - PL1 30
4.X	REFREE NAM	ME Unknown	AL-C4 - PL1 31 ADL5-FL1.32-d22 AL-C5-FL1.33 Select Instrument
	REFREE TEL	NO. Unknown	ADC77FL1334423 VarAna(E) - ADC97FL134423 VarAna(E) - ADC97FL28 VarAna(P) - ADC117FL30 Varana(P) - ADC137FL32 PPA - ADC137FL32 IDS -
¥.¥	REMARK (50 characters only)		PPA1- Others-

0

æ

74

8 73

-%

-9.

NIT THE

37: 151 Υ.

'A' 7

Ż

7 Processing software

Physiological Variability Analyzer (Electronics Division, BARC)

 $\begin{array}{c} \mathcal{L}_{\mathcal{F}} \xrightarrow{\mathcal{F}} \mathcal{F}_{\mathcal{F}} \xrightarrow{\mathcal{F}} \xrightarrow{\mathcal{F}} \mathcal{F}_{\mathcal{F}} \xrightarrow{\mathcal{F}} \xrightarrow{\mathcal{F}} \mathcal{F}_{\mathcal{F}} \xrightarrow{\mathcal{F}} \xrightarrow{\mathcal{F}} \mathcal{F}_{\mathcal{F}} \xrightarrow{\mathcal{F}} \xrightarrow{\mathcal{F}}$

AT VA

