Applications of Physiological Variability Analyzer Software

Rajesh Kumar Jain Head, BioMedical Instrumentation Group, Electronics Division, BARC (rkjain@barc.ernet.in) Medical instruments based on impedance and photo plethysmographic techniques

- ICVG,
- AnuPhoto Rheograph,
- Medical Analyzer,
- Peripheral Pulse Analyzer (single channel),
- Peripheral Pulse analyzer (three channel),
- Cardiac Output Monitor etc.
- These instruments has individual software for data acquisition, processing and analysis.

Problem

- Software maintenance/ upgradation issue
- Data portability issue

Solution

Generalized Software named "Physiological Variability Analyzer"

Physiological Variability Analyzer Software

This has two parts

for acquisition (Bio-signal Acquisition System)

for processing and analysis(Physiological Variability Analyzer)

Features of Generalized Software

- Acquisition of biological signal from any of the medical instruments developed by BARC.
- For post processing, load any data file acquired from any of the above instruments.
- Flexibility of selecting the signals for variability study.
- Study of the standard as well as user defined physiological variabilities such as HRV, BFV, MI, Interrelation between two signals etc.

Features of Generalized Software (cont...)

- Computation of time domain, frequency domain and non-linear variability parameters.
- Facility to export above parameters in text (ASCII) and/or excel format for further analysis.
- Hard copy option for the processed data (in time and frequency domain) and consolidated view of selected variabilities.
- Facility to load raw data from the standard ASCII file from any instruments other than that of BARC.
- Easy upgradability.

Flow Chart for Acquisition Software: Bio-signal Acquisition System

Acquisition Software: Bio-signal Acquisition System Main Panel

Acquisition Software: Bio-signal Acquisition System Settings Panel

Settings

<u>ο</u>κ

PERSONAL INFORMATION

Name Ashok Age 33 Gender male Female	Project Id 0 LEAD BA LA LA COM PORT 1 Acq Time 275 Sampling Rate 500
Diseases HEALTHY	Drug Usage
ADDRESS ADD2	Select ADC
TELEPHONE Unknown	ADC0+PL127 ADC1+PL128 ADC2+PL129 ADC3+PL130 ✓ ADC4+PL1314#P ↓ 2 ↓ 2
REFREE NAME Unknown	ADC5-FL1.32 DIR ADC5-FL1.33 ADC7-FL1.33 ADC7-FL1.33 Select Instrument
REFREE TEL. NU. JUnknown	ADC1 + FL1.34 ADC8 + PL2.27 ADC9 + FL2.28 VarAna(E) -
	ADC11+PL2.54 ADC11+PL.30 Varana(P)-
No remark	ADC13+FL:::32 ADC13+FL:::34 IDS-
	Others-

Acquisition Software: Bio-signal Acquisition System Facility for defining signals in new instrument

Select ADC		
ADC0- PL1.27	📥 📧 Enter Signal Name	
ADC2- PL1.29 ADC3- PL1.30 ADC4- PL1.31 ADC5- PL1.32 ADC6- PL1.33 ADC7- PL1.34 ADC8- PL2.27 ADC9- PL2.28 ADC10- PL2.29	Enter Signal Name DelZ QK]
ADC11- PL2.30 ADC12- PL2.31 ADC13- PL2.32 ADC14- PL2.33 ADC15- PL2.34	Varana(P)- PPA- T IDS-	
	Others-	

Processing Software: Physiological Variability Analyzer Flow Chart

Processing Software: Physiological Variability Analyzer Main Panel

Processing Software: Physiological Variability Analyzer Selection Panel

Processing Software: Physiological Variability Analyzer Main Panel

Processing Software: Physiological Variability Analyzer Display Panel

Processing Software: Physiological Variability Analyzer Display Panel – 2nd page

APPLICATIONS OF PHYSIOLOGICAL VARIABILITY ANALYZER

Clinical Implication of Heart Rate Variability K.K. Deepak & Ashok K Jaryal, Deptt of Physiology, AIIMS, New Delhi – 110029

- A Predictor of Myocardial Infarction
- As a Marker for Sudden Infant Death Syndrome (SIDS)
- As a Risk Marker for Sudden Unexplained Death in Epilepsy (SUDEP)
- As a Marker for ArrhythmiaA tool for Classification of Heart Disease
- As an Indicator of Hemodynamic Crisis
- As a Tool for Monitoring ANS During Anesthesia
- As a Parameter to Predict Time-to-Death
- As a Suitable Parameter for Telemedicine
- As an indicator of inflammation
- As a Useful Parameter for Biofeedback Intervention

 Heart Rate Variability: A Potential Indicator of Psychophysiological Stress Amitabh Dube, Ashok Gupta, Vineet Sinha[#] & K.K. Deepak^{*}, Deptt of Physiology, S.M.S. Medical College & Hospital, Jaipur, [#]BARC, Mumbai – 400 085, *AIIMS, New Delhi - 110029

Figure shows PSD in a control subject (a) before and (b) during mental arithmetic. Increase in LF amplitude and decrease in HF amplitude can evidently be seen during mental stress.

• Variability Studies and Disease Characterization, Smitha Bhat, K. S. Bhat, Shilpa D'sa & Roopa, Deptt of Medicine, FMMC, Mangalore

Figure shows different morphological patterns in (a) control and patients with (b) coronary artery disease, (c) cirrhosis of liver and (d) tuberculosis.

Clinical Applications Fundamental Research in Homoeopathy Using Physiological Variability, Nirupama Mishra¹, KC Muraleedharan², Gautam Rakshit³, AS Paranjpe⁴,

Ramesh S Bawaskar², Sujatha³ and C Nayak⁵, ¹National Institute of Homoeopathy, Kolkata; ²RRI, CCRH, Belapur, Navi-Mumbai; ³RRI, CCRH, Bhubaneswar; ⁴BARC, Mumbai (Retired); ⁵CCRH, Department of Ayush, New Delhi

Figure shows spectrum with Aconite 30. HF peak is decreased more than 50% in HRV as well as BFV. Thus there is H- response in HRV and BFV.

Figure shows pre (top) and post (bottom) intervention HRV (left) and BFV (right) spectrum with Aconite 1M. VLF peak is increased more than 100% in BFV. Thus there is V+ response in BFV. There is no significant change in HRV spectrum.

Fig shows Percentage Response (a) in HRV and (b) in BFV with different potencies of **Aconite**. It is observed that potency 30 produces a discernible response in HRV and 1M produces a discernible response in BFV.

Fig. shows Percentage Response in HRV with different potencies of Nux Vomica. Distinct peak for Nux Vomica-200 can evidently be seen.

Clinical Applications Fundamental Research in Homoeopathy : Experiments with Sulphur, Srinath Rao, Prasanna Kumar, Sandeep Kumar Ram, Vivek Sakthidjaran and Mullei, FMHMC, Mangalore

Fig. shows HRV and BFV spectra before and after administration of **Sulphur 30** in a control subject. More than 100% increase in VLF peak and 50% decrease in HF can evidently be seen in HRV post intervention.

- Identifying Tridosha in Pulse Morphology for Disease Characterisation
 - Prasanna Kelkar¹, Sunil Karamchandani² and Sameer K.
 Jindal³; ¹Ayurved Hitaishani Trust & Samshodhan Kendra, Thane; ²Ph D
 Student, Electrical Engineering Deptt., IIT Mumbai; ³Sanjeevani Polyclinic, Navi Mumbai
- "Strength of the HF peak may have inverse relation with the level of Vata element and similarly LF & VLF may have inverse relations with Kapha & Pitta levels in the body"

- Co-variance in Heart Rate Variability and Blood Pressure Variability
 - K.K. Deepak & Ashok K Jaryal, Deptt of Physiology, AIIMS, New Delhi – 110029
- Myocardial Infarction and Heart Rate Variability
 - Ashok K Jaryal, Kushal Madan*& KK Deepak, Deptt of Physiology, AIIMS, New Delhi, *Sir Ganga Ram Hospital, New Delhi
- Evaluation of Peripheral Pulse Analyzer from Ayurvedic View Point
 - P.M. Varier, K. Muraleedharan, T.S. Muraleedharan, T.P. Udayakumari and A.V. Sudheer; Arya Vaidya Sala, Kottakkal.

Conclusion

- It is a diagnostic tool with unlimited usage. Software is general purpose and can be used to find variability of any recorded parameter.
- It has shown usage in different medical fields viz. Homeopathy, Ayurvedic, Disease Characterization etc.
- Research Collaboration Projects are welcome in the field of different variability studies and can get research grant from BRNS, DAE.

